Inverse characterization of composites using guided waves and convolutional neural networks with dual-branch feature fusion
نویسندگان
چکیده
In this work, ultrasonic guided waves and a dual-branch version of convolutional neural networks are used to solve two different but related inverse problems, i.e., finding layup sequence type identifying material properties. the forward problem, polar group velocity representations obtained for fundamental Lamb wave modes using stiffness matrix method. For supervised classification-based network is implemented classify into types (inverse problem - 1) regression-based utilized identify properties 2)
منابع مشابه
Guided Labeling using Convolutional Neural Networks
Over the last couple of years, deep learning and especially convolutional neural networks have become one of the work horses of computer vision. One limiting factor for the applicability of supervised deep learning to more areas is the need for large, manually labeled datasets. In this paper we propose an easy to implement method we call guided labeling, which automatically determines which sam...
متن کاملImage Companding and Inverse Halftoning using Deep Convolutional Neural Networks
This paper presents a deep learning technology for tackling two traditional low-level image processing problems, companding and inverse halftoning. This paper makes two main contributions. First, to the best knowledge of the authors, this is the first work that has successfully developed deep learning based solutions to these two traditional low-level image processing problems. As well as intro...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks
Robust vision-based pedestrian detection is a crucial feature of future autonomous systems. Thermal cameras provide an additional input channel that helps solving this task and deep convolutional networks are the currently leading approach for many pattern recognition problems, including object detection. In this paper, we explore the potential of deep models for multispectral pedestrian detect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mechanics of Advanced Materials and Structures
سال: 2021
ISSN: ['1537-6532', '1537-6494']
DOI: https://doi.org/10.1080/15376494.2021.1982090